Leibniz Seminorms for “matrix Algebras Converge to the Sphere”

نویسنده

  • MARC A. RIEFFEL
چکیده

In an earlier paper of mine relating vector bundles and Gromov–Hausdorff distance for ordinary compact metric spaces, it was crucial that the Lipschitz seminorms from the metrics satisfy a strong Leibniz property. In the present paper, for the now noncommutative situation of matrix algebras converging to the sphere (or to other spaces) for quantum Gromov–Hausdorff distance, we show how to construct suitable seminorms that also satisfy the strong Leibniz property. This is in preparation for making precise certain statements in the literature of high-energy physics concerning “vector bundles” over matrix algebras that “correspond” to monopole bundles over the sphere. We show that a fairly general source of seminorms that satisfy the strong Leibniz property consists of derivations into normed bimodules. For matrix algebras our main technical tools are coherent states and Berezin symbols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Commutative Resistance Networks

In the setting of finite-dimensional C∗-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace a...

متن کامل

Matrix Algebras Converge to the Sphere for Quantum Gromov–hausdorff Distance

On looking at the literature associated with string theory one finds statements that a sequence of matrix algebras converges to the 2-sphere (or to other spaces). There is often careful bookkeeping with lengths, which suggests that one is dealing with “quantum metric spaces”. We show how to make these ideas precise by means of Berezin quantization using coherent states. We work in the general s...

متن کامل

Matricial Quantum Gromov-hausdorff Distance

We develop a matricial version of Rieffel’s Gromov-Hausdorff distance for compact quantum metric spaces within the setting of operator systems and unital C∗-algebras. Our approach yields a metric space of “isometric” unital complete order isomorphism classes of metrized operator systems which in many cases exhibits the same convergence properties as those in the quantum metric setting, as for e...

متن کامل

Tight Bounds for Consensus Systems Convergence

We analyze the asymptotic convergence of all infinite products of matrices taken in a given finite set by looking only at finite or periodic products. It is known that when the matrices of the set have a common nonincreasing polyhedral norm, all infinite products converge to zero if and only if all infinite periodic products with periods smaller than a certain value converge to zero. Moreover, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009